
Using The Lightweight Workflow Engine

I. Introduction
The Lightweight Workflow Engine (LWWE) is a flexible, portable,
multipurpose tool for running workflows. Written entirely in Java, the
engine can be used either as a stand-alone server or as an embedded
component in another application.

Workflows are described in workflow architecture files, which can either
be XML or a sectioned text file known as a WIF file. These files describe
the task layout and dependencies within workflows. Tasks can use system
calls, Java, Jython, or Groovy.

II. The Workflow Architecture File Structure
Every workflow must at least contain workflow architecture file (typically
workflowArchitecture.xml or workflowArchitecture.wif). This file describes
to the engine the variables, tasks, and task dependencies. The structure
of the XML file is based on a JAXB object (Java Binding for XML), which
allows for easy loading and saving of the workflow. The file structure of
the WIF file is a sectioned file, similar to windows INI files.

The workflow architecture file consists of three parts.

Header
The header contains various attributes about the workflow, such as who
created, who submitted it, etc. This is usually located at the top of the
file.

Variables
Variables represent quantities that can be referenced within the workflow,
added to the environment of system tasks, and other applications.

Tasks
The tasks section contains the information such as task names,
dependencies, and other related data. This also can be used to give
“structure” to the workflow hierarchy.

The Workflow File Header
The structure of the file was designed for simplicity. The header of the
file contains information about the workflow, such as who created it and
modified it. Below is a sample header for a workflow architecture file.

XML:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<WorkflowArchitecture xmlns="LightweightWorkflowEngine">
 <Name>Test Workflow</Name>
 <Description>A test workflow</Description>
 <Creator>Jane</Creator>
 <CreationDate>1/1/1111</CreationDate>
 <ModifiedBy>Joe</ModifiedBy>
 <ModificationDate>1/1/2222</ModificationDate>
 <SubmittedBy>Jim</SubmittedBy>
 <Version>1.0.0</Version>
 <OverallStatus>Completed</OverallStatus>
 <MD5Checksum>abdd00f34500cb</MD5Checksum>

<LoggingDirectory>/log</ LoggingDirectory >
…

WIF:

[Workflow Architecture]
NAME = Test Workflow
DESCRIPTION = A test workflow
CREATOR = Jane
CREATION_DATE = 1/1/1111
MODIFIED_BY = Joe
MODIFICATION_DATE = 1/1/2222
SUBMITTED_BY = Jim
VERSION = 1.0.0
OVERALL_STATUS = Completed
MD_5_CHECKSUM = abdd00f34500cb
LOGGING_DIRECTORY = /log

The first line is just the XML specification. The second line declares the
object (WorkflowArchitecture) and the namespace for this file (always
LightweightWorkflowEngine). These two lines are the same in every
workflow file. The rest of header is described in the following list:

• Name: This is the name of the workflow. The name can be any
string.

• Description (optional): A brief description of the workflow.
• Creator (optional): The original creator of the workflow.
• CreationDate (optional): The original creation date of the workflow.
• ModifiedBy (optional): Who last modified this workflow.
• ModificationDate (optional): When the last modification took place.
• SubmittedBy (optional): Who submitted this workflow to execute.
• Version (optional): The version of this workflow.

• OverallStatus: The overall status of this workflow. The engine sets
this field.

• MD5Checksum (optional): A checksum of the file.
• LoggingDirectory(optional): The directory in which to write

workflow logs for this workflow.

Most for the fields in the header are optional, meaning the workflow will
run regardless of what is entered. However, it is a good idea to store
meaningful information in these fields as it makes it easier to search and
maintain the workflows.

The Workflow File Variables
Variables are simple name-value pairs that can be read and sometimes
set within a workflow. The variables are useful when dealing with values
that might change during workflow execution, or when tasks need
specific environment variables to run.

XML:
<WorkflowVariables>
 <Name>X</Name>
 <Value>8</Value>
</WorkflowVariables>

WIF:
[Variable.X]
NAME = X
VALUE = 8

In WIF files, a variable section always takes the form of
[Variable.VariableName].

The Workflow File Tasks
The rest of the file is comprised of one or more nested ChildTasks. The
following is an example of a ChildTask object.

XML:
<ChildTasks>
 <Name>System Task A</Name>
 <Description>A system task</Description>
 <Information>Some info</Information>
 <RetriesOnFail>0</RetriesOnFail>
 <TaskStatus>Completed</TaskStatus>
 <TaskType>System</TaskType>

 <IterationLimit>0</IterationLimit>
 <Iteration>0</Iteration>
 <ExecutableObject>ls -lrt</ExecutableObject>
 <TaskDependency>Task A eq Completed</TaskDependency>
 <CompletionDependency>Task C eq
Completed</CompletionDependency>
 <TimeDependency>TIME(2/2/2009:12:15:00)</TaskDependency>
</ChildTasks>

WIF:
[Task.Path.To.Task]
NAME = Task
DESCRIPTION = The task
INFORMATION =
TASK_TYPE = SYSTEM
TASK_STATUS = QUEUED
RETRIES_ON_FAIL =
ITERATION_LIMIT = 1
ITERATION = 1
EXECUTABLE_OBJECT =
TASK_DEPENDENCY =
TIME_DEPENDENCY =
COMPLETION_DEPENDENCY =

The properties of a ChildTasks object are described below:

• Name: Every task must have a UNIQUE name that identifies it. Pretty
much any string can be used for a name, including names with
spaces.

• Description (optional): A brief description of this task.
• Infromation (optional): Any additional information about the task.

Unlike Description, tasks and/or the engine dynamically update this
field.

• RetriesOnFail (optional): The number of times to retry an aborted
task automatically. This is currently ignored.

• TaskStatus: The status of the task. Initially this can be absent or
empty, however the workflow engine automatically populates this
field when running.

• TaskType: The type of this task. This will be covered more in depth
later.

• IterationLimit (optional): The maximum number of times this task
can be executed. A missing value or value of <= 0 indicates that
there is no limit. See the Task Looping section for more
information.

• Iteration (optional): The current number of times this task has been
executed. See the Task Looping section for more information.

• ExecutableObject: The actual object executed by this task when the
task and time dependencies are satisfied. Depending on the task
type this can be anything from a command line specification to a
Java class name to nothing at all.

• TaskDependency (optional): A logical “equation” to evaluate that
contains task dependencies for this task. This is covered in depth
in the Task Dependency section.

• CompletionDependency (optional): A logical “equation” to evaluate
that contains dependencies for determining whether the task is
complete. Some task types utilize this field.

• TimeDependency (optional): A time dependency specification for
this task. This is covered later in depth in the Time Dependency
section.

Note that for the WIF file format, nesting is determined by the section
name (what appears between the brackets. All task section names must
begin with Task. So to declare Task B under Task A, the section name
would be [Task.Task A.Task B].

Task Type
The first important field is TaskType. There are several different task
types within the engine. Some task types are built-in while others allow
for extensions or customized tasks.

The following is a list of the currently supported built-in types and the
summary of their purpose.

• System: The system type task executes an operating system
command. This includes executing native scripts.

• Parent: This task acts as a way to group related children tasks
together. The parent task acts a monitor for the child tasks,
reflecting the worst state of the children.

• Loop: This task is similar to the parent task, with the addition that
it will loop over the child tasks for a fixed number of times.

• Timespan: This task type is like the loop task, except it uses date-
time iterators instead of a simple index count.

The other task types (Java, Jython, and Groovy) allow for programmatic
customization of a task. These will be covered in the API documentation.

Task Modifiers
Along with task types, there are also task modifiers. A task modifier
influences the behavior of a task or how it interacts with the overall
workflow.

The following are the current task modifiers:

MANUAL_TASK: If this flag is specified in the task dependencies, this task
will be treated as a manual task. A manual task is a task that can ONLY be
triggered by the user. Other tasks can depend on this task, and this
task’s status will be reflected when determining the overall workflow
status.

OPTIONAL_TASK: If this flag is specified in the task dependencies, this
task will be treated as an optional manual task. An optional manual task
can only be triggered by user action. Unlike the manual task, this task
has no effect on the overall workflow status unless it is invoked. Also,
having other tasks depend on this task will always result in a true status,
effectively rendering the dependency useless.

Executable Object
The ExecutableObject contains the specification for what is to be
executed by the task. This varies by task type, and in some cases is
ignored.

Among the built-in task types, only system tasks utilize this field. An OS
command is specified here and will be executed when the task runs. For
other built-in task types, this field is not used.

For the scripting task types this can either represent a class or script file.
This will be covered more in depth in the API documentation.

Task Dependency
The TaskDependency is an optional field that is the logic equation used
to determine when a task may be executed during a workflow. The logic
equation is used to evaluate whether or not all task dependencies have
been met for this task. If there is no string specified, then the task will
run when the workflow is started (assuming it doesn’t have a time
dependency).

The grammar for the task dependency string is simple. Typically, you
want to check on task status conditions for various tasks and execute a
task when those conditions are met. For example, you may want Task B
to run only if Task A has been completed successfully, as shown in the
example above. The equation for this is simply:

 Task A eq Completed

Note that all task names are case sensitive. Logical operators and
status conditions are not case sensitive.

For testing task conditions, there are two acceptable operators:

• eq: Checks to see if the status of the specified task is equal to the
specified status.

• neq: Checks to see if the status of the specified task is not equal to
the status specified.

The engine also supports logical concatenation operators for performing
more than one dependency check:

• and: Performs a logical and between two conditions
• or: Performs a logical or between two conditions
• xor: Performs a logical exclusive or between two conditions

The logical concatenators are for evaluating multiple dependencies. For
example, a task with two dependencies may look like:

 Task B eq Completed and Task A eq Completed

You can also use parentheses to set the order of operations:

 Task C eq Completed or (Task A eq Completed and Task B eq
Completed)

To the engine, this reads as “If Task C is completed or if Task A and Task
B are completed”.

The task status conditions can be any of the following:

• Completed: The task completed successfully
• Aborted: The task was aborted
• Suspended: The task was suspended
• Resumed: The task was resumed
• Updated: The task was updated
• Queued: The task was queued
• Running: The task was running

So another task dependency may look like this:

 Task B eq Completed or Task A eq Aborted

Which can be read as "Run this task if Task B is completed or if Task A
failed".

NOTE: The built-in container type tasks (Parent, Loop, Timespan) ignore
task dependencies. Manual and optional tasks also ignore this field.

Completion Dependency
A completion dependency is an optional field that can specify when a
particular task should be marked as complete. The rules for a completion
dependency are the same as for a task dependency.

The only built-in type that currently supports completion dependencies
are system tasks.

NOTE: Container type tasks (Parent, Loop, Timespan) inherently depend
on their children for completion status. Any completion dependencies are
ignored. Manual and optional tasks also ignore this field.

Time Dependency
In addition to a task dependency, there can also be a time dependency.
Time dependencies are instigated after task dependencies have been
satisfied. The format here is also simple. Here is an example:

TIME(2/2/2009:12:15:00)

All time dependencies have the format TIME(...). A time dependency can
have up to three arguments. The following are the acceptable time
dependency specifications:

• TIME (datetime): Specifies a time dependency that will fire at the
specified date and time.

• TIME (datetime, interval): Specifies a time dependency that begins
at a specified date and re-triggers after every interval.

• TIME (datetime, interval, delay): Specifies a time dependency that
begins at a specified date. After the delay, it will re-trigger at the
specified interval.

Using * for the datetime will automatically use the current system time.
So a time dependency specified like this:

TIME(*, 3600)

Would set up a time dependency that would repetitively trigger after
every hour, using the current time as the starting point.

NOTE: The built-in container type tasks (Parent, Loop, Timespan) ignore
time dependencies. Manual and optional tasks also ignore this field.

III. Built-In Task Types
As noted, there are several different built-in task types that can be used
to quickly construct a workflow.

The System Task
The simplest task type is System, as shown in the example.

XML:
<ChildTasks>
 <Name>System Task A</Name>
 <Description>A system task</Description>
 <Information>Some info</Information>
 <TaskType>System</TaskType>
 <ExecutableObject>ls -lrt</ExecutableObject>
 <TaskDependency>Task A eq Completed</TaskDependency>
</ChildTasks>

WIF:
[Task.System Task A]
NAME = System Task A
DESCRIPTION = A system task
INFORMATION = Some info
TASK_TYPE = System
EXECUTABLE_OBJECT = ls -lrt
TASK_DEPENDENCY = Task A eq Completed

A System task is a fully automated task that runs whatever command is
entered in the ExecutableObject field. In the example, this is simply a
command line call to ls, though it could be anything that can be run on
the command line, including bash and python scripts. The engine handles
all task status setting and updating. For an initial attempt at a workflow,
the System type is the easiest to use.
All system type tasks automatically create a log file which stores all stderr
and stdout output from the executing process.

Other task types are free to implement their own form of logging, or
none at all if it is deemed unnecessary.

As noted, a System type task is a special task that runs a command on
the command line. The call to the system is independent of the workflow
engine. Other than starting the process and analyzing the return code,
there is no direct interaction with the running task.

However, occasionally there may be need to have more information than
just the state of a task to be sent to a user or stored with the workflow. In
these instances, a workflow designer can have a task output messages
with special keywords to indicate to the engine that the user should be
notified or the information should be stored.

The keywords MUST appear at the start of the line and be terminated
with a colon character. The keywords are case sensitive. The following is
a list of keywords, their meanings, and how the engine handles the
message.

• FATAL: Indicates a fatal problem. The string is used to create a
status message, which is sent back to anyone monitoring the
workflow.

• ERROR: Indicates an error. The string is used to create a status
message, which is sent back to anyone monitoring the workflow.

• WARN: Indicates a warning. The string is used to create a status
message, which is sent back to anyone monitoring the workflow.

• INFO: Indicates an information message. The string is used to
create a status message, which is sent back to anyone monitoring
the workflow.

• DEBUG: A debugging message. The string is used to create a status
message, which is sent back to anyone monitoring the workflow.
These should be removed before a release.

• UPDATE: Indicates that a task’s information should be updated.
Unlike the other keywords, this does not create a status message.
Instead, the information is used to update the task information.
This information is stored with the workflow.

Some examples of parse-able messages are:

UPDATE: I’m running my second loop!
ERROR: No directory was found!
WARN: Value X was 3 but should have been 4.

The Loop Task
The loop task provides a convenient way to have a loop within a
workflow.
XML:
<ChildTasks>
 <Name>Loop Task</Name>
 <Description>A looping task</Description>
 <Information>Some info</Information>
 <IterationLimit>10</IterationLimit>
 <TaskType>Loop</TaskType>

</ChildTasks>

WIF:
[Task.Loop Task]
NAME = Loop Task
DESCRIPTION = A looping task
INFORMATION = Some info
ITERATION_LIMIT = 10
TASK_TYPE = Loop

Unlike the System task, the loop task does not use an ExecutableObject
(if one is specified, it is ignored) or dependency fields. The task starts
executing when the workflow starts and assumes the worst-case state of
its children. The task runs until the iteration limit is reached, reflecting
the worst-case status of the children it is looping over. For example, even
though the loop task is running it will not be marked as being in the
running state until the worst-case status of it’s children is “running”.

NOTE: Do not use the Loop Task state as a dependency in child tasks.
The Loop Task state does not reflect the state of the Loop Task; it reflects
the state of the child tasks. Therefore, setting up a dependency on the
Loop Task itself may not yield the expected behavior.

The only “safe” states that can be used for dependencies for tasks outside
the loop are the completion states (COMPLETED and ABORTED). These
states indicate that the loop is no longer running. While the loop is
running, the state will be unstable and should not be relied upon.

The Loop task triggers a new iteration when all it’s children have reached
a completed state. The loop task will abort itself if any child becomes
aborted. An example of a loop using the looping task follows.

XML:
<ChildTasks>
 <Name>Loop Task</Name>
 <Description>A looping task</Description>
 <Information>Some info</Information>
 <IterationLimit>10</IterationLimit>
 <TaskType>Loop</TaskType>
 <ChildTasks>
 <Name>Some Task</Name>
 <Description>Some task</Description>
 <TaskType>System</TaskType>
 <ExecutableObject>ls -lrt</Executable>
 <TaskDependency></TaskDependency>

 </ChildTasks>
</ChildTasks>

WIF:
[Task.Loop Task]
NAME = Loop Task
DESCRIPTION = A looping task
INFORMATION = Some info
ITERATION_LIMIT = 10
TASK_TYPE = Loop

[Task.Loop Task.System Task A]
NAME = System Task A
DESCRIPTION = A system task
TASK_TYPE = System
EXECUTABLE_OBJECT = ls -lrt

In the above example, the loop task will iterate whenever Some Task
completes. The loop task finally completes (marks itself as completed)
when this has happened 10 times.

While specifying a limit can be useful in some cases, often a loop limit
may need to be determined “dynamically”. The iteration limit field can
take a workflow variable name as well. For example, if there is a variable
known to the workflow engine called X and it is numeric, then you can
specify the iteration limit as:

XML:
<IterationLimit>X</IterationLimit>

WIF:
ITERATION_LIMIT = X

In this case, when this task is executed it will look up the variable value
and use that for the iteration limit. The variables that a workflow can
access are implementation specific. Whatever is using the workflow
engine is responsible for setting up accessible variables. It is also
possible to specify variables directly within the workflow architecture file.

Parent Task
The parent task is a specialized task that is designed to act as a parent
for a group of related tasks.

The parent task, like the loop task, does not use an ExecutableObject.
Instead, it relies on its children to determine when the task is complete.
Like the loop task, the parent task starts as soon as the workflow starts.

The parent task marks itself as complete only when all of its children
have been completed. While the task is waiting, it reflects the worst-case
status of its children.

The parent task ignores any specified dependencies.

XML:
<ChildTasks>
 <Name>Parent Task</Name>
 <Description>A container task</Description>
 <Information>Some info</Information>
 <TaskType>Parent</TaskType>
 <ChildTasks>
 <Name>Task A</Name>
 <Description>Some task</Description>
 <TaskType>System</TaskType>
 <ExecutableObject>ls -lrt</Executable>
 <TaskDependency>Some Task eq Running</TaskDependency>
 </ChildTasks>
</ChildTasks>

WIF:
[Task.Parent Task]
NAME = Parent Task
DESCRIPTION = A looping task
INFORMATION = Some info
TASK_TYPE = Parent

[Task.Parent Task.Task A]
NAME = Task A
DESCRIPTION = A system task
TASK_TYPE = System
EXECUTABLE_OBJECT = ls -lrt
TASK_DEPENDENCY = Some Task eq Running

Task A starts running when Some Task starts running. The container task
will remain in the running state until Task A completes.

NOTE: Do not use the Parent Task state as a dependency in child
tasks. The Parent Task state does not reflect the state of the Parent Task;
it reflects the state of the child tasks. Therefore, setting up a dependency
on the Parent Task itself may not yield the expected behavior.

Like the loop task, the only “safe” states that can be used for
dependencies for tasks outside the loop are the completion states
(COMPLETED and ABORTED). These states indicate that the parent is no
longer running. While the parent is running, the state will be unstable and
should not be relied upon.

Java, Groovy, and Jython Tasks
These task types allow a designer to specify a compiled class or script
that has been derived from the workflow task API classes as tasks within
a workflow.

This offers the utmost in flexibility, as new functionality can be
dynamically added to the workflow engine and its tasking capability.
However, these tasks require programming knowledge and familiarity
with the workflow engine API, so these will be covered in the API
documentation.

IV. Other Aspects

Nested Tasks
There are no limits to the depth of nesting for tasks. However, in practice
having heavily nested tasks can lead to an unwieldy file if you’re using
the XML format. The WIF format does not experience this problem, but
task sections names become long.

While XML lends itself to a hierarchical structure, that structure is
superficial to the workflow itself. Aside from the container type tasks like
parent and loop tasks, task execution is determined by dependencies, not
their placement within the workflow file or how deeply they are nested.
However, it is a good practice to place tasks where they logically would
occur during workflow execution.

The same applies for WIF types files as well. While the dependencies will
always ensure correct execution order, it is easier to manage the file if
tasks appear in a logical order.

Another thing to keep in mind is that while technically any task can have
nested tasks, it is only really meaningful if the tasks are children of a
“container” type task (Parent, Loop, Timespan).

So while it is possible to have system type tasks nested within system
type tasks, it is not a good way to represent a workflow and carries no
significance in how the workflow will be executed.

Task Looping Without Using Loop
It is possible to construct a loop in a workflow without using the Loop
task, but it is not recommended due to how easily bugs can be
introduced and how hard they can be track down.

XML:
<ChildTasks>
 <Name>Task A</Name>
 <Description>A task</Description>
 <TaskType>System</TaskType>
 <ExecutableObject>ls -lrt</ExecutableObject>
 <TaskDependency></TaskDependency>
</ChildTasks>
<ChildTasks>
 <Name>Task B</Name>
 <Description>A looping task</Description>
 <TaskType>System</TaskType>
 <ExecutableObject>ls -lrt</ExecutableObject>
 <TaskDependency>Task A eq Completed or Task C eq
Completed</TaskDependency>
 <ChildTasks>
 <Name>Task C</Name>
 <Description>Another task</Description>
 <TaskType>System</TaskType>
 <ExecutableObject>ls -lrt</ExecutableObject>
 <TaskDependency>Task B eq Completed</TaskDependency>
 </ChildTasks>
</ChildTasks>

WIF:
[Task.Task A]
NAME = Task A
DESCRIPTION = A task
TASK_TYPE = System
EXECUTABLE_OBJECT = ls -lrt
TASK_DEPENDENCY = Some Task eq Running

[Task.Task B]
NAME = Task B
DESCRIPTION = A looping task

Rob Burns � 3/25/09 9:29 AM
Comment: A reference to the workflow
architecture example and perhaps a brief
description of how it works, would be useful.

TASK_TYPE = System
EXECUTABLE_OBJECT = ls -lrt
TASK_DEPENDENCY = Task A eq Completed or Task C eq Completed

[Task.Task B.Task C]
NAME = Task C
DESCRIPTION = Another task
TASK_TYPE = System
EXECUTABLE_OBJECT = ls -lrt
TASK_DEPENDENCY = Task B eq Completed

As can be seen, Task A has no dependencies, so starts when the
workflow is executed. Task B will trigger whenever Task A is completed
or whenever Task C is completed. Task C is triggered whenever Task B is
completed.

When the workflow runs, Task A will execute to completion. Barring any
errors, it will notify Task B that it has completed. This will trigger Task B
to run. When Task B completes, it will notify Task C. When Task C
completes, it will again notify Task B to run.

An even simpler loop can be made:

XML:
<ChildTasks>
 <Name>Task A</Name>
 <Description>A task</Description>
 <TaskType>System</TaskType>
 <ExecutableObject>ls -lrt</ExecutableObject>
 <TaskDependency>Task A eq Completed</TaskDependency>
</ChildTasks>

WIF:
[Task.Task A]
NAME = Task A
DESCRIPTION = A task
TASK_TYPE = System
EXECUTABLE_OBJECT = ls -lrt
TASK_DEPENDENCY = Task A eq Completed

Task A depends only on itself completing, and will continuously retrigger
every time it completes.

The looping described above is infinite. There are no limits on how many
times the tasks will be called. For better control, a workflow designer
would use the IterationLimit field.

By specifying the iteration limit, the engine will only execute a task up to
the iteration limit. After that, the task remains in its completed state and
no longer sends out triggering information unless forced to by a user
action.

The current iteration of a task is tracked ONLY if the IterationLimit has
been set. The field used for tracking the current iteration is the Iteration
field.

So within a workflow file, an iterative task may look like this:

XML:
<ChildTasks>
 <Name>Task A</Name>
 <Description>A task</Description>
 <TaskType>System</TaskType>
 <IterationLimit>10</IterationLimit>
 <Iteration>3</Iteration>
 <ExecutableObject>ls -lrt</ExecutableObject>
 <TaskDependency>Task A eq Completed</TaskDependency>
</ChildTasks>

WIF:
[Task.Task A]
NAME = Task A
DESCRIPTION = A task
TASK_TYPE = System
EXECUTABLE_OBJECT = ls -lrt
ITERATION_LIMIT = 10
ITERATION = 3
TASK_DEPENDENCY = Task A eq Completed

This field is used by the engine, and is stored with the rest of the
workflow. While manipulation of this field is possible, it is not
recommended.

It is strongly recommended to use the loop task instead of manipulating
task dependencies to create loops.

V. Workflow Execution
When a workflow architecture file is loaded by the engine, it first goes
through and loads all the tasks. Then the engine goes through each task,
determines the dependencies, sets up the necessary notifications, and
waits to receive a run command.

When a run command is received, the engine broadcasts a start message
to the workflow. Any tasks that have no dependencies are immediately
triggered to run. In every workflow there must be at least one task
that has no dependencies, otherwise the workflow will not
automatically start. Otherwise, the workflow will wait for a user
invocation to start.

An engine user may also set “environment” values into the engine. These
values are accessible directly via the API for Java, Groovy, and Jython
tasks. For System tasks, these variables are added as process
environment variables. This functionality is useful for setting common
variable values that are used throughout the workflow, such as a user
name or a group code. The System type tasks however are not able to
alter these variables other than in its process.

IV. Appendix

XML Workflow Example:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<WorkflowArchitecture xmlns="LightweightWorkflowEngine">
 <Name>LWWE_null</Name>
 <Description>A workflow for testing the workflow engine</Description>
 <Creator>ME</Creator>
 <CreationDate>1/1/1111</CreationDate>
 <ModifiedBy>YOU</ModifiedBy>
 <ModificationDate>1/1/2222</ModificationDate>
 <SubmittedBy>someone</SubmittedBy>
 <Version>1.0.0</Version>
 <OverallStatus></OverallStatus>
 <MD5Checksum>0</MD5Checksum>
 <ChildTasks>
 <Name>Task A</Name>
 <Description>A system task</Description>
 <TaskType>System</TaskType>
 <ExecutableObject>ls -lrt</ExecutableObject>
 </ChildTasks>
 <ChildTasks>
 <Name>Parent Task B</Name>
 <Description>A parent task</Description>
 <TaskType>Parent</TaskType>
 <!—This is a child task of parent task b
 <ChildTasks>
 <Name>Task C</Name>
 <Description>A system task</Description>

 <TaskType>System</TaskType>
 <IterationLimit>10</IterationLimit>
 <ExecutableObject>echo “Task C says hello repeatedly!”</ExecutableObject>
 <TaskDependency>Task A eq Completed</TaskDependency>
 </ChildTasks>
 </ChildTasks>
</WorkflowArchitecture>

WIF Workflow Example:

[Workflow Architecture]
NAME = LWWE__2010_Jun_23_15_36_49_0973
VERSION = 1.0.0
CREATOR = ME
CREATION_DATE = 1/1/1111
MODIFIED_BY = ME
MODIFICATION_DATE = Wed Jun 23 15:36:44 EDT 2010
SUBMITTED_BY = ME
DESCRIPTION = A workflow for testing the workflow engine
MD_5_CHECKSUM = 0
LOGGING_DIRECTORY =
OVERALL_STATUS =

[Variable.X]
NAME = X
VALUE = 1

[Variable.Y]
NAME = Y
VALUE = 2

[Variable.Z]
NAME = Z
VALUE = 3

[Task.System Task A]
NAME = System Task A
DESCRIPTION = A system task
INFORMATION =
TASK_TYPE = SYSTEM
TASK_STATUS = COMPLETED
RETRIES_ON_FAIL =
ITERATION_LIMIT =
ITERATION = 0
EXECUTABLE_OBJECT = echo "Hi from Task A"
TASK_DEPENDENCY =
TIME_DEPENDENCY =

COMPLETION_DEPENDENCY =

[Task.Loop Task]
NAME = Loop Task
DESCRIPTION = Loop Task
INFORMATION = Loop Task [Run 3 of 3]
TASK_TYPE = LOOP
TASK_STATUS = COMPLETED
RETRIES_ON_FAIL =
ITERATION_LIMIT = 3
ITERATION = 3
EXECUTABLE_OBJECT =
TASK_DEPENDENCY =
TIME_DEPENDENCY =
COMPLETION_DEPENDENCY =

[Task.Loop Task.Parent Task 1]
NAME = Parent Task 1
DESCRIPTION = Parent task 1
INFORMATION =
TASK_TYPE = PARENT
TASK_STATUS = COMPLETED
RETRIES_ON_FAIL =
ITERATION_LIMIT =
ITERATION = 0
EXECUTABLE_OBJECT =
TASK_DEPENDENCY =
TIME_DEPENDENCY =
COMPLETION_DEPENDENCY =

[Task.Loop Task.Parent Task 1.System Task C]
NAME = System Task C
DESCRIPTION = System task
INFORMATION =
TASK_TYPE = SYSTEM
TASK_STATUS = COMPLETED
RETRIES_ON_FAIL =
ITERATION_LIMIT =
ITERATION = 0
EXECUTABLE_OBJECT = echo "Hi from Task C"
TASK_DEPENDENCY = System Task A eq Completed
TIME_DEPENDENCY =
COMPLETION_DEPENDENCY =

[Task.Loop Task.Parent Task 1.System Task D]

NAME = System Task D
DESCRIPTION = System task
INFORMATION =
TASK_TYPE = SYSTEM
TASK_STATUS = COMPLETED
RETRIES_ON_FAIL =
ITERATION_LIMIT =
ITERATION = 0
EXECUTABLE_OBJECT = echo "Hi from Task D"
TASK_DEPENDENCY = System Task C eq Completed
TIME_DEPENDENCY =
COMPLETION_DEPENDENCY =

[Task.Manual Task MT]
NAME = Manual Task MT
DESCRIPTION = A manual task
INFORMATION =
TASK_TYPE = SYSTEM
TASK_STATUS = COMPLETED
RETRIES_ON_FAIL =
ITERATION_LIMIT =
ITERATION = 0
EXECUTABLE_OBJECT = echo "Hi from Manual Task MT"
TASK_DEPENDENCY = MANUAL_TASK
TIME_DEPENDENCY =
COMPLETION_DEPENDENCY =

[Task.Optional Task OT]
NAME = Optional Task OT
DESCRIPTION = An optional task
INFORMATION =
TASK_TYPE = SYSTEM
TASK_STATUS = QUEUED
RETRIES_ON_FAIL =
ITERATION_LIMIT =
ITERATION = 0
EXECUTABLE_OBJECT = echo "Hi from Optional Task OT"
TASK_DEPENDENCY = OPTIONAL_TASK
TIME_DEPENDENCY =
COMPLETION_DEPENDENCY =

